Home Laboratory Automation How AI is Reshaping Pathology and Histology

How AI is Reshaping Pathology and Histology

Application of AI in histological image analysis

One of the more recent technological breakthroughs in histology, whole slide imaging (WSIs), has made it possible to digitally process a slide after it’s stained using modern WSI scanners. However, such a large accumulation of data requires more time to analyze and study. AI is now being applied, to identify features in these images to help make diagnoses, to improve content-based image retrieval, and to find new clinically relevant associations within large pools of samples. These images can then be used for varied clinical applications that require either supervised or unsupervised learning. Supervised learning relies on providing the AI with training images so that it can match the appropriate characteristics of new images with those of previously annotated ones, which is critical when making a diagnosis. On the other hand, unsupervised learning can be used to interpret unlabeled images, extrapolating the data to find associations between clinical markers and disease. For example, Beck et al used AI to determine that stromal morphology correlates with the prognosis of patients with breast cancer.3

Limitations of AI

AI isn’t perfectly suited to take over the entire job of a pathologist, however. Though talk has centered around using AI as a sort of sidekick to the pathologist, there are still several hurdles towards making AI usable in the clinic.4 The main drawback to using any of the current iterations of AI in pathology and histology is the lack of publicly available training data.2 Annotated images are difficult to come by since only trained histologists or pathologists can accurately label them.3 Consider that within these databases, only a handful of diseases are represented, which would make it difficult for any program to efficiently learn what it needs to know to make an accurate diagnosis.3 There are several band-aid solutions to this problem (e.g. transfer learning, which involves applying the knowledge gained from one task to another), but the only true way to improve the performance of AI is to compile more training images.1

Another limitation is the cost of deployment; with pathology departments already under immense financial pressure, acquiring the required infrastructure to scan, store, and analyze gigapixel histopathological scans is a formidable challenge.2 Issues with no clear-cut solutions include trouble with multitasking appropriately as well as difficulties accounting for the subtler nature of the decisions the pathologist regularly makes, such as using cautious language or descriptive wording when making a diagnosis.2

AI may provide better care for patients

Assuming scientists can get AI running efficiently, it has the potential to significantly augment the value of patient data. It could also handle most of the pathologist’s and histologist’s benign, monotonous tasks like counting mitotic cells, leading to more efficient automation.2 Overall, AI could reduce the time for patients to receive a diagnosis by eliminating practical delays, such as triaging immunohistochemical tests and revisiting other cases, making it possible to select regions of interest and decide on follow-up tests immediately once the slide is processed.5

Many scientists are already beginning to refine their approaches to AI in pathology and histology. Some studies have already shown that AI can have an accuracy for diagnosing cases as high as 94%, though others are as low as 70%.1 Ultimately, it will be up to companies like PathAI and PAIGE to collaborate with physicians and develop a product―tailored for the needs of pathologists and histologists―that acquires approval from regulatory bodies, such as the US Food and Drug Administration (FDA), which would assure both patients and doctors that AI can be trusted to make appropriate clinical decisions.2

LabTAG by GA International is a leading manufacturer of high-performance specialty labels and a supplier of identification solutions used in research and medical labs as well as healthcare institutions.

histology labels


  1. Chang HY, Jung CK, Woo JI, Lee S, Cho J, Kim SW, Kwak TY. Artificial intelligence in pathology. J Pathol Transl Med. 2019;53:1-12.
  2. Tizhoosh H, Pantanowitz L. Artificial intelligence and digital pathology: Challenges and opportunities. J Pathol Inform. 2018;9(38):1-6.
  3. Komura D, Ishikawa S. Machine Learning Methods for Histopathological Image Analysis. Comput Struct Biotechnol J. 2018;16:34-42.
  4. Sharma G, Carter A. Artificial Intelligence and the Pathologist: Future Frenemies? Arch Pathol Lab Med. 2017;141:622-623.
  5. Djuric U, Zadeh G, Aldape K, Diamandis P. Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care. npj Precis Oncol. 2017;1(1):1-5.
Alexander Goldberg, Ph.D.
The scientific writer and social media manager at GA International. Dr. Alex Goldberg earned his Ph.D. in biology and previously worked as a post-doc in toxicology and medicine, studying chronological lifespan in yeast, anti-neoplastic small molecules, and the genetics of tuberous sclerosis complex.


Please enter your comment!
Please enter your name here

About LabTAG

LabTAG is the worldwide leader in cryogenic and chemical-resistant label manufacturing. With over 20 years of experience in the industry, and a catalog of 6000+ products, we have the selection and know-how to meet your labeling needs.

Learn more about LabTAG

Most Popular

5 Features that Every Modern LIMS Should Have

Recently, labs have turned to full digitization with the intention of enhancing their ability to track everything, from samples to consumables. Thus, the use...

Why It’s Important to Include Sample Identification When Optimizing Lab Protocols

Recently, a news article on optimizing lab protocols described how several researchers at the University of Montreal decided to devise a new strategy for...

Going Green: Does Using -70°C Affect Sample Storage

Ultra-low temperature storage is a staple of laboratory life. Nearly every scientist leans on safe and protected long-term sample storage afforded by lab freezers,...

How Identification Systems Can Help Preserve Research Integrity

Maintaining research integrity is a serious issue in the field of scientific research, especially when it comes to academic research. Funded by taxpayers, there...

Connect with us


More Categories

Recent Comments

Efficient Solutions for Barcode Printing Challenges Unveiled on Why Do Barcodes Need A Quiet Zone?
Central BioHub GmbH on The History and Function of Biobanks
Michelle Yin on The Science of Cryogenics